The Tabbycat Video Server:
From the Protocol to the Implementation’

Jehan-Frangois Paris?

Department of Computer Science
University of Houston
Houston, TX 77204-3010

Tel. (1) 713-743-3341

ABSTRACT

Tabbycat is a video server prolotype using a
proactive approach to distribute popular videos on
demand. Rather than answering individual
customer requests, Tabbycat broadcasts the
contents of its videos according to a deterministic
schedule. As a result, a Tabbycat server consisting
of a single workstation with a single ATA disk drive
and a Fast Ethernel interface can distribute up to
three two-hour videos while achieving a maximum
customer wailing time of less than four minutes.

We review the major steps of the development of
Tabbycat from the search for the most efficient
broadcasting protocol to the actual implementation

of the server. Finally, we indicate some direction for
future research.

. INTRODUCTION

One day, we will be able to sit in front of our
television sel, grab our remole control, order a
specific program, and start watching it within a few
minutes, if not seconds. The service that will make
this dream possible already exists. It is called

video-on-demand (VOD) and can already be found
in many hotels,

Given the attractiveness of the concept, one might
wonder why VOD services are not already more
widely availabie. The reason is simple: it is due to

' Parts of this paper were previously presented al the 2003 IEEE
International Conference on Communications.

? Supported in part by the National Science Foundation under
grant CCR-9088350.

Fax (1) 713-743-3335 Email paris@cs.uh.edu

the high costs of providing these services. Thesg
high costs result mostly from the high bandwidtp,
requirements of VOD services. Assuming that the
videos are in MPEG-2 format, each user request
will require the delivery of around 5 Megabits of
data per second. Hence a video server allocating a
separate stream of data to each request would
need an aggregate bandwidth of § Gigabits per
second to accommodate 1,000 concurrent users.
Handling such bandwidths requires costly upgrades
of the existing communication infrastructure angd
equally coslly servers to handle all the necessa

/0 traffic. As a result, VOD services are stlill too

costly lo compete with either video rentals or pay-
per-view television.

We built the Tabbycal video server to show that
simpler, cheaper allernative was possible. Instead
ol assigning a separate data sltream to each
customer request, Tabbycat broadcasls each video
according to a deterministic schedule guaranteeing
that customers will never have to wait more than
lew minutes for the video of their choice. Hence,
is the ideal solution for services olfering ten
twenty “hot” videos to a large customer base. All
sludies of video and movie popularity indicate that
these top ten or twenty videos would be the most
profitable to distribule [5]. Even videocasselle
rental stores focus their efforts on having on hand
enough videocassettes of the top videos of the day.

Our first design decision was the selection of
broadcasting prolocol. It had to satisfy two major
requirements. First, it had to be efficient and
require the minimum amount of bandwidth
guarantee a given maximum customer wailing time.
Second, it had to be straightforward to implement.
We quickly found that none of the existing protocols
satisfied both criteria. Juhn and Tseng's Harmonic

J. Diaz de Le6n, G. Gonzalez, J. Figueroa (Eds.); Avances en: Clencias de la Computacién, pp. 20-27, 2003,

© IPN, México 2003.

20

The Tabbycat vides Server: From the Protocol to the Implementation 21

Broadcasling (8] protocol was a strong candidate
because it required much less bandwidth than any
other broadcasting protocol. Unfortunately it suf-
fered from two major flaws. First, it failed to
guarantee on-lime delivery of video data under all
circumstances. Second, it allocated a multitude of
very low bandwidth data streams to each video,
which made it much harder to implement than its
rivals.

The solution we proposed was a new class of
broadcasting protocols that allocate to each video a
small number of fixed bandwidth video channels
and use time-division multiplexing to ensure that all
video contents are broadcast at the appropriate
bandwidth {12]. As a result, these so-called Pagoda
Broadcasting protocols achieve bandwidth
requirements comparable 1o those of the Harmonic
Broadcasting protocol while being much easier to
implement.

The remainder of this paper is organized as follows.
Section 2 relales our search for the most efficient
broadcasting protocol. Saction 3 discusses our
Tabbycat server prolotype. Section 4 mentions a
few possible extensions and Section 5 reviews
other video servers. Finally, Section 6 has our con-
clusions.

. BROADCASTING PROTOCOLS

Broadcasting prolocols offer the best solution for
the successful deployment of metropolitan video-
on-demand (VOD) services because they provide a
way to distribute very popular videos in an efficient
fashion and these so-called “hot” videos are
expected to account for the majority of customer
requests. Rather than reacting lo individual viewer
requests, broadcasting protocols distribute the
video contenls according to a fixed schedule
guaranteeing that all customers will receive these
contents on time. As a result, the number of cus-
lomers walching a given video does not affect the
server workload.

All recent VOD broadcasting protocols derive in
some way from Viswanathan and Imielinski's Pyra-
mid broadcasting Protocol [20] and, like it, they
assume that most, if not all, customers will watch
each video in a strictly sequential fashion. They
also require these customers to be connected to the
service through a “smart” set-top box (STB) capable
of (a) receiving data at rates exceeding the video

consumption rate and (b) storing locally the video
data that amive out of sequence. In the current
state of storage technology, this requires the
presence of a disk drive in each STB, a device
already present in the so-called digital VCR's
offered by TiVo [18], Replay [15] and Ultimate TV
{19].

Stream 1: banawidih b

S|S|SsS|Ss|s]S

Stream 2:

earadwidh W2
S S 5
Stream 3: bandwidth)
l S, l S, |

Figure 1. The first three streams for the
HB8 protocol.

A. Hammonic Broadcasting Protocols

When we started our investigation, Juhn and
Tseng's Harmmonic Broadcasting (HB) [8] protocol
was the video broadcasling protocol requiring the
least bandwidth to guarantee a given maximum
customer waiting time. To achieve that goal, HB
divides each video into N segments S, with i =1, 2,
.... N. of equal duration d. Each of these N seg-
ments is continuously broadcast on a separate data
stream whose bandwidth is proportional to the
harmonic series. As seen on Figure 1, segment S,
is broadcast at bandwidth equal to the video
consumation rate b, segment S; is broadcast at half
this bandwidith, segment S, is broadcast at
bandwidth &/3 and so on. More generally, segment
S, with 1 5i< N is broadcast by stream j at band-
width b,

When customers order a video, their STB waits for
the beginning of a new instance of segment S, on
stream 1. Since the first segment is broadcast at full
bandwidth, the customers can start watching it.
Meanwhile the STB starts receiving and butfering
video data from the remaining N-1 streams.
Hence the maximum customer waiting time is equal
to the duration of a segment d = O/N where D is the
duration of the video.

Paris

Stream 1: bandwidth b2
S, S, S,
Stream 2. banawidth b/3
[5 l S l
Stream 3: bandwidth b/d
| S |

Figure 2. The first three streams for the
PHB protocol with m = 2.

The total bandwidth used to broadcast the video is
given by

laN

1-N1
i | i

where b is the video consumption rate and Hyis the

harmonic number of N.

The original HB protocol suffers from a fundamental
flaw: it cannot always provide in-time delivery of all
video data [11]. Two more recent variants of the
harmonic broadcasting protocol, the Cautious
Harmonic Broadcasting (CHB) and the Quasi-
Harmonic Broadcasting (QHB) protocols remedy
his limitation [11].

better harmonic protocol, Polyharmonic Broad-
casting (PHB) [12] implements a fixed-delay policy.
Like other harmonic broadcasting protocols, PHB
breaks a video into N segments of equal duration.
Each of these N segments is allocated a separate
stream and segment S, with 1<is N are broadcast
by stream /at bandwidth b/i+m-1). As a resull,
any customer having waited m/N times the duration
of the video can receive all the video segments by
the time they are needed. The bandwidth require-
ments of the PHB protocol are given by:

> b
Bpup = ;m =B(Hy.m1= Hm-s) (3]
As a result, the PHB protocol requires slightly less
than five times the video consumption rate to guar-
antee a maximum viewing delay of 60 seconds for a
two-hour video.

Channel 1: bandviiam y

S, S S S S, S,

Channel 2:

Figure 3. The first three streams for the
PB protocol.

Figure 2 shows an example of a PHB protocol with
m=2. Observe thal the first segment is broadcast
at half the video consumption rate, the second
segment at one third the video consumption rale
and so on.

B. Pagoda Broadcasting Protocols

The excellent performance of the PHB comes at a
price. To be able to achieve a maximum waiting
time of 60 seconds with slighlly less bandwidth than
five times the video consumption rate, it needs to
partition each video into at least 360 segments and
broadcast these 360 segments on 3,600 separate
data channels. Hence, a video server broadcasting
the top 20 videos would then have to manage 3,600
parallel data streams whose bandwidths would vary
between 1/3 and 1/362 times the video consump-
tion rate. Managing such a large number of
independent data streams is likely to be a daunting
task.

The Pagoda Broadcasting protocol (PB) achieves
similar bandwidth efficiencies without requiring as
many data streams. Like HB and PHB, PB
partitions each video into N segments of duration d.
It assigns to each video between four and seven
channels whose bandwidths are all equal to the
video consumption rate and uses time-division mul-
tiplexing to ensure that each segment Is transmitted
as frequently as needed.

The Tabbycat vides Server: From the Protocol to the Implementation 23

Figure 3 displays the first three channels of a
Pagoda Broadcasting (PB) protocol. Observe first
that each of lhese three channels is partitioned into
slots of equal duration, each conlaining one seg-
ment. As in the HB protocol, the first channel
continuously repeats the first segment of the video.
All odd slots of the second channel transmit seg-
ment S; while all even slots transmil in tumn
segments S; and Ss. Hence, S; is transmitted once
every two slots while S, and Ss are both transmitted
once every four slots. We will say that channel 2 is
portioned into two subchannels of equal bandwidih
/2, with the first subchannel transmitting segment
S, and the second subchannel transmitting seg-
ments S, and Ss. The third channel is similary
partitioned Into three subchannels with the first sub-
channel transmitting segment S, the second
subchannel transmitting segments Ss and S; and
the third subchannel transmitting segments Sy and

S

As Figure 4 shows, the same process can be
repeated on all subsequent channels by partitioning
each even-rumbered channel into two subchannels
and each odd numbered channel into three sub-
channels. The protocol can thus map 49 segments
into 5 channels and achieve a waiting time equal to
1/49 of the video duration with a bandwidth equal to
5 times the video consumption rate. This translales
into a waiting time of slightly less than two minutes

and half for a two-hour video.

The newer Fixed-Delay Pagoda Broadcasting
(FDPB) protocol [14) achieves even lower customer
waiting times by requiring all users to wait for a
fixed delay w before watching the video they have
selected. As In the PHB protocol, this waiting time
is normally a multiple m of the segment duration d.
Hence the FDPB protocol can assume that all
clients will start downloading data from the moment
they order the video rather than from the moment
they start receiving the first segment. The FDPB
protocol also uses time-division mulliplexing to par-
tition each of the k channels allocated to the vidao
in a given number s, of subchannels of equal band-
width. Unlike the PB protocol, it allocates the N
segments of the video to these subchannels in strict

sequential order.

Channsl | Subchannel | Segments
C 1 S,
~ 1 Sz
2 Sc.and Ss
1 S;
C, 2 Sg and S;
3 Sgand Sy
Cs 1 Si010 Sva
2 S2010 S29
1 S15 fo Sm
Cs 2 S3010 S
3 Soto Ss
1 Ssot0 Sy
C‘ 2 Si0010 S1as
1 875 to 399
G 2 S15010 S1o9
3 S20010 Sz40

Figure 4. Complete segment to channel mappings
of the PB protocol

Figure 5 summarizes the segment-to-channel map-
pings of a FDPB protocol requiring customers to
wait for exaclly four limes the duration of a
segment. The first channel s partitioned into V4
subchannels each having one half of the channel
slots. This allows the protocol to repeat segments
S, and S, every 4 slots, and segments Ss to S
every 6 slots. The sacond channel is similarly parti-
tioned into V9 subchannels each having one third of

the channel! slots.

Repeating the same process over all successive
channels, the FDPB protocol can map 121
segments into four channels and achieve a determl-
nistic waiting time of 4/121 of the duration of the
video, that is, slightly less than four minutes for a
two-hour video. Adding a fifth channel would allow
the server to broadcast 313 segments and achieve
a wailing time of 92 seconds for the same two-hour
video. This is 37 percent less than the two minutes
and half the PB protocol could achieve. Even lower
waiting times can be achieved by increasing m. For
instance, an FDPB protocol with m=100 can
achieve a waiting time of 58 seconds for a two-hour

video broadcast on 5 channels.

24 Jehan-Frangois Paris

Channel | Subchannel | Segments
c, S,and S,
S; to Ss
Ss to Sg
Sy to Sy
Siato Sir
S1e 10 Sz
S22 10 Sz6
S2710 Sa2
S3; 10 Sae
S« 10 Sar
Swsl0o Ssq
Sss 10 Se2
Ssa to Sn
S72 10 Sgy
Ss2 10 Sg3
Se4 10 Sios
S107 10 Si2

G

o

Nlolonjalw|v]a|lo|alwidlslolo]atin]

Figure 5. Segment to channel mappings of the first
four channels for a FDPB protocol with a delay of
four segments (m = 4)

Channel| Number of | Segments
Subchannels
G 3 Si10 Sz
G 5 Siato Se;
G 8 Si310 Siye
Ci 13 Siz0 10 Sa1e
G 18 Sy19 10 Seaz

Figure 6. The first filve channels for the optimized
FDPB protocol with m= 8,

There is one major drawback in increasing m.
Recall that the protocol ensures that each segment
is completely received by the STB before the cus-
tomers start to watch it. As a resull, it provides
implicit forward buffering. Our measurements of
several popular videos In DVD format indicate that
this forward buffering can eliminate most of the
bandwidth fluctuations Inherent to compressed
video signal as long as the segment duralion
remains above one minute.

Bandwidth
F S
[4,]

a5
3
255
. 243 : : —_— .
A}
0 0.02 0.04 0.08 0.08 0.1

Delay as fraction of video duration

Figure 7. Bandwidth requirements of 'PB, HB
NPB (with m = 8) and FDPB (with m = 9) protocols,

Tabbycat uses an FDPB protocol with m=9 as it
was found to be a good compromise. We were able
to improve upon the performance of the original
FOPB protocol by slightly increasing the number of -
subchannels for channels G, Ci, and Gs. As seen
on Figure 6, this oplimization allowed us to map 847
segments into 5 channels, which corresponds to a
waiting time of 77 seconds for a two-hour video. -

Figure 7 compares the bandwidth requirements of
our optimized FDPB protocol with those of the
original HB, PHB with m=9 and PB protocols. -
Customer delays are expressed as fractions of the
video duration and bandwidths in muitiples of the
video consumption rate. As one can see, the
Tabbycal protocol performs much better than PB,
slightly better than the original HB but not as well as
PHB with m=9.

Wae further modified the protocol to provide the sys-
tem users with equivalents of the VCR pause and
rewind commands. Tabbycat clients keep in their
bufter all the previously watched segments of each
video untli the end of- that video. As a result,
Tabbycat customers can either temporarily suspend
the viewing process or retlum to any video scene
they have already watched. Since these two
features are provided by the STB without any server
intervention, their sole cost is a few extra gigabytes
of additional temporary data on the STB hard drive.

The Tabbycat vides Server: From the Protocol to the Implementation 25

TABLE l. OUR PROTOTYPE CONFIGURATION

Server Intel Pentium 4 1.7 GHz

512 MB Rambus RAM

40 GB ATA-100 (7200 RPM) HDD
100 Mb/s Ethemnel Interface

Linux Kemel 2.4.x with ext2fs

Network | Fast Ethemet

Clients | Intel Pentium Ill 600 MHz
256 MB RAM

10 GB ATA-66 HDD

100 Mb/s Ethemet Interface
Linux Kemel 2.4.x with ext2fs

Videos | Full-length videos in DVD format
(MPEG-2)

lll. THE TABBYCAT SERVER

A Tabbycat server consists of one or more worksta-
tions each distributing a few of the most popular
videos. These workstations act autonomously
under nomal circumstances. Our prolotype con-
sisted of a single Pentium 4 system whose
characteristics are summarized in Table 1.

We first benchmarked the transfer rate of the ATA
drive and found it was about 40 MB/s. Having
measured the Instantaneous bandwidths of several
MPEG-2 videos [10], we found that a typical MPEG-
2 would require an average channel bandwidth of
750 kB/s with cartoons having a slighlly higher
bandwidth than other videos. We also found that
the occasional peaks in bandwidth would average
out because of forward buffering of the FDPB.
Hence a Tabbycal with a single ATA drive should
be able to broadcast 50 channels. With these 50
channels, we could broadcast 10 videos using 5
channels per video. :

We decided to use UDP Instead of TCP because of
its low overhead. Though UDP is an unreliable
protocol, we found that in a LAN there was almost
no packet loss as long as the client and.the server
were connected to the same Ethemet swilch.
Moreover, using FDPB in a cable TV environment
would mean thal the network would have the major-
ity of ils traffic coming from the server and given the
improvements in network reliability, this seems to
be a reasonable choice.

TABLE ll. RELEVANT BANDWIDTHS

VOD Channel 720 kB/s

ATA-100 Drive | 50 channels (around 40 MB/s)

Fast Ethemet | 13 channels (around 10 MB/s)

Gigabit Ethemet | 100 channels (around 80 MB/s)

We found that we could achieve speeds of about
10MB/s on a 100Mb/s Elhemel. As a result, we
could have about 13 channels per server.

As shown on Table |, the clients were older work-
stations with 600 MHz processors and 256 MB of
memory. They rely on the freely available xine
video player for decoding and playing videos. We
Increased their kemel network buffer sizes from
65kB to about 70MB to avoid packet losses due 10
congestion on the client kemnel butfers.

We measured the performance of our server when
it was broadcasting three videos on twelve 720 kB/s
channels.

All three videos were broadcast using the modified
version of the FDPB protocol with m = 9. As shown
on Figure 6, this allowed us to partition each video
in exaclly 318 segments, which should allow us to
achieve a customer waiting lime equal to 9/318 of
the duration of each video. Nole that this value
assumaes that the clienl can start downloading data
from segments that have already started. Since our
clients could not do thal, our customer waiting times

. will be closer to 10/318 of the video duration

Our first video is a full-feature movie in MPEG-2
format lasting 140 minutes. The observed customer
waiting time on a client machine was 273 seconds,
that is, 9 seconds more than expected. Our second
video is another fuil-feature movie lasling 130
minutes. Unlike the first video it was encoded at a
lower bandwidth (slighlly below 360 kB/s). As a
result, our segment transmission time is roughly
equal to half its viewing time. This resulted in an
observed customer waiting time of 156 seconds.
Our third video shows highlights of professional
hockey games in MPEG-2 format. The video lasts
25 minutes and the observed customer waiting time

- is 52 seconds, that is, 5 seconds more than

expected.

Ujsing a 100Mb Ethemet causes the network band-
width to be a bottieneck as we can only use 25
percent of the available disk bandwidth.

A betier solution would be to use a gigabit Ethemet
interface. We estimate this would allow transfer
rales of up to 80 MB/s. Unfortunately, the disk
bandwidth limits us to 40 MB/s, that is, half of that
bandwidth.

Thers would be several ways to eliminate that disk
bottieneck. First we could attach to each work-
station two SCSI disk dnves and divide the disk
workload among these two drives. The main disad-
vantage of this solution is the higher cost of SCSI
drives.

A second option would be to store in the server's
main memory the most frequently transmitted seg-
ments of each video. Since we are using a
deterministic broadcasting protocol, we can predict
ahead of time the I/O bandwidth savings that could
thus be achieved [17].

IV. POSSIBLE EXTENSIONS

Three possible extensions could enhance the
current implementation of our Tabbycat prototype.

First, our prototype relies on UDP for distributing the
videos. As a result, its applicability is limited to
either cable TV environments or well-controlled
LANSs, where packet losses are small enough 1o be
tolerated by the video-encoding scheme. Deploying
Tabbycat over a shared WAN would require
implementing a reliable muiticast protocol. We are
currently investigating several possible sofutions.

Second, Tabbycal now requires each STB to
receive al the same time data from all the k
channels allocated to the video being currently
watched. This requirement complicates the design
of the client and increases its cost.

One possible solution to this problem Is to use an
FDPB protocol limiting the STB receiving bandwidth
to two channels. We found out that such a protocol
with the same value of m = 9 could map up to 220
segments into four channels {17]. Hence it would
achieve a waiting time equal to 9/220" of the video
duration, that is, a littlle less than 5 minutes for a
two-hour video. Adding a fifth channel would allow
us to partilion the video into 474 segments and

achieve a waiting time of 137 seconds for {
two-hour video. This is almost twice as much

the customer wailing time of an FDPB protocasl
requiring the customer STB 1o recelve at the samo
time data from all the k channels. As a resyit we
would have to add one extra channel per video 19
maintain the same wailing time. °

Finally, we can see from Figure 5§ that our FDpg
protocol requires as much bandwidth to broadcast
the first 12 segments of a video as for broadcasting
Sa10 10 Suy, that is, a tolal of 529 segments. Sign-
ificant bandwidth savings could be achieved by
requiring each customer STB to preload in advancg
the first few minutes of each video. This would alsg
enhance the user experience by allowing us to pro-
vide instant access 1o these videos [13, 16).

V. OTHER VIDEO SERVERS

The Berkeley Distributed Video-on-Demand System
[3] allowed clients across the Intemet to submit
requests to view audio, video and graphical
streams. Playback was accomplished by streaming
data from a media file server through the network to
the client's computer. No effort was made to share
data among overlapping requests.

The Tiger system was a scalable, fault-tolerant mul-
limedia file system using commodity hardware [1].
Unlike Tabbycat, it dedicated a separate data
stream to each customer request and made no
attempts to share dala among overlapping
requests. Hot spots were avoided by striping all
videos across all workstations and disks in a Tiger
system. Tiger prevented conflicts among requests
by scheduling Incoming requests in a way that
ensures that two requests will never access the
same resource at the same lime. This task was
distributed among all of the workstations in the
system, each of which having an incomplete view of
the global schedule. The main disadvantage of the
approach was Its poor scalability: Tiger designers
found that a system with ten workstations could only
handle one hundred concurrent user requests.

More recently, Bradshaw e! al. have presented an
Intemet streaming video testbed [2] using both peri-
odic broadcast and patching/stream tapping [4. 7).
This allowed the server lo select the best distribu-
tion protocol for each video, namely, broadcasting
videos in very high demand while distributing less
popular videos through stream tapping/patching.

The Tabbycat vides Server: From the Protocol to the implementation 27

This fealure resulted In a much more complex sys-
tem than our Tabbycat server. In addition, the
greedy disk-consarving broadcasting protocol (6]
used by their system is less bandwidth-efficient than
the optimized FDPB protocol used by Tabbycat.
While the optimized FDPB protocol only requires
five channels 1o achieve a waiting time of 77 sec-
onds for a two-hour video, the greedy disk-
conserving broadcasting protocol requires 6
channels to achieve a waiting time of 114 seconds
for the same video.

VI. CONCLUSION

Current wisdom is that distributing video on demand
to large audiences requires complex expensive
farms of video servers. We built the Tabbycat video
server to show that a metropolitan video server
distributing the top ten to twenty videos couid
consist of a few powerful workstations running
unmodified versions of a standard operating sys-
tem.

The secret of Tabbycat's good performance Is the
broadcasting protocol it uses to distribute the
videos. We knew ahead of time that the FDPB
protocol would provide smaller waiting times than
any other protocol broadcasting fixed-size seg-
ments over channels of equal bandwidth [14). We
found it easy to implement and easy to tune thanks
to its regularity.

As it stands now, Tabbycat is a mere proof-of-
concept prototype. More work is still needed to
allow its deployment in environments where packet
losses are likely to happen.

ACKNOWLEDGEMENTS

We want to thank especially Mr. Saurab Mohan for
his careful analysis of the bandwidth variations of
actual videos in MPEG-2 format and Mr. Karthik
Thirumalai for his implementation of the Tabbycat
prototype. Most of the work on protocol develop-
ment was done In close cooperation with Prof.
Darrell D. E. Long from the University of Califomia,
Santa Cruz.

The Tabbycat project was supported In part by the
USENIX Foundation, the Texas Advanced
Research Program under grant 003652-0124-1999
and the National Sclence Foundation under grant
CCR-9988390.

REFERENCES

1)

2]

3]

(4

5]

6]

(8)

(10)

(1)

[12)

(13)

(14]

(15]
(16)

(17)

(8]
(19]
(20]

W. J. Bdosky, R. P. Fitzgeraid and J. R. Douceur,
Distnbuted schedule management in the Tiger video
tleserver. Proc. 167 ACM Symposium on Operaling
Systemns Principles, pp. 212-223, October 1997.

M. K, Bradshaw, B. Wang, S. Sen, L. Gao, J. Kurose, P.
Shenoy, and D. Towsley, Periodic broadcast and parching
services—Implementation, measurement, and analysss in
an Internet streaming video lestbed. Proc. & ACM
Mukimeda Conferenca, Oct. 2001.

D. W. Brubeck and L. A. Rowe, Hierarchical storage

management in a distnbuted video-on-demand syslem.”

IEEE Multmedia, 3(3):37-47, 1996.

S.W.Carterand D. D. E. Long, | video-on-

demand server efficiency through stream tapping. Proc.
International Conference on Computer Communications

and Networks, pp. 200-207, Sepl. 1997.

A.Dan, D. Sitaram, and P. Shahabuddin, Dynamic
batching policies for an on-demand video server.
Mubmedia Systems, 4(3):112-121, June 1996.

L. Gao, J. Kurcse, and D. Towsley, Efficient schemes for
broadcasting popular videos. Proc. Intemational
Workshop on Network and Operating System Support for
Digaal Audio and Video, July 1998,

K. A Hua, Y.Cal, and S. Sheu, Patching: a multicast
technique for true video-on-demand senvices. Proc.
ACM Mulimedia Conference, pp. 191-200, Sep. 1398.

L Juhn and L. Tseng, Harmanic broadcasting lor video-
on-demand service. IEEE Transactons on Broadcasting,
43(3):268-271, Sept. 1997.

S. Mohan, Characterizing the Bandwidth Requirements of
Compressed Videos. MS Thesis, Department of Computer
Science, University of Houston, May 2001.*

J.-F. Paris, S. W. Carter, and D. D. E. Long, Efficient
broadcasting protocols for video on demand. Proc. 6
Intemational Symposium on Modeing, Analysis and
Simulation of Computer and Telecommunication Systemns,
pp. 127-132, July 1898,

J.-F.Péris, S. W. Carter and D. D. E. Long, A low band-
width broadcasting protecdl for video on demand. Proc. 7"
Intematwonal Conference on Computer Communications
and Networks, pp. 690-697, Oct. 1998.

J.-F. Paris, D. D. E. Long and P. E. Mantey, A zero-delay
broadcasting protocol for video on demand. Proc. 1999
ACM Muttimedia Conference, pp. 189-197, Nov. 1999.

J.-F. Panis, A fixed-delay broadcasting protocol for video-
on-demand. Proc. 10" intemational Conference on
Computer Communicatons and Networks, pp. 418—423,
Oct. 2001.

ReplayTV, hitp/Aww.replay.conv.
H.-K. Sul, H.-C. Kim and K. Chon, A Hybrid Pagoda
Broadcasting protocd: Fixed-Defay Pagoda Broadcasting

protocal with partial preloading. Proc. 2003 IEEE Intema-
tional Conference on Mulimedia and Expo, July 2003,

K. Thirumalal, J -F. Paris and D. D. E. Long, Tabbycal: an
inexpensive scalable server for video-on-demand, Proc.
IEEE Intemational Conference on Communications, PP.
896-900, May 2003.

TiVo Technologies, http/www.tivo.cony.
UlimateTV, hitp/Awww.ultimatety.comy.

S. Viswanathan and T. Imielinski, Metropofitan area video-
on-demand senvice using Pyramid Broadcasting.
Mulimedia Systems, 4(4):197-208, 1996.

